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BORIS CHORNY

In this work we develop the cellular equivariant homology functor and apply
it to prove the equivariant Euler-Poincaré formula and the equivariant Lefschetz
theorem.

1. Introduction

Let D be an arbitrary, small topologically enriched category. In this paper
we develop a D-CW -homology functor which allows for easy computation of the
ordinary D-equivariant homology defined by E. Dror Farjoun [1]. Our approach
is a generalization of the G-CW -(co)homology functor constructed by S.J. Willson
[14] for the case of Bredon homology with respect to a compact Lie group G.

Then we apply the D-CW -homology functor to obtain:

• The Equivariant Euler-Poincaré formula:

(1) χD(X˜ ) =
∞∑
n=0

(−1)nr̃kHS(HD
n (X˜ ; I))

This formula establishes a connection between the equivariant homology
and the equivariant Euler characteristic; r̃kHS(?) is a slight modification of
the rank element originally introduced by Hattori [8] and Stallings [12]; see
Remark 4.4 for its definition.
• The Equivariant Lefschetz theorem:

Let X˜ be a triangulated D-space, f : X˜ → X˜ an equivariant map. If the
equivariant Lefschetz number

(2) ΛD(f) =
∞∑
n=0

(−1)nt̃rHS(HD
n (f ; I))

is not equal to zero, then there are f -invariant orbits in X˜ . Moreover, the
orbit types of the invariant orbits may be recovered from ΛD(f); t̃rHS(?) is
a modification of the Hattori-Stallings trace similar to the above variation
of the Hattori-Stallings rank; see Remark 4.9 for details.

2. Preliminaries

2.1. D-spaces. Let T op denote the category of the compactly generated Hausdorff
topological spaces. D is a fixed but arbitrary small category enriched over T op.
We work in the category T opD of functors from D to T op. The objects of this
category are called topological diagrams or just D-spaces. The arrows in T opD are
natural transformations of functors or equivariant maps.
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2.2. D-homotopy. An equivariant homotopy between two D-maps f, g : X˜ → Y˜ ,
where X˜ and Y˜ are D-diagrams, is a D-map H : X˜ × I → Y˜ , where I denotes the
constant D-space I(d) = [0, 1]. A homotopy equivalence f : X˜ → Y˜ is a map with
a (two sided) D-homotopy inverse.

2.3. D-orbits. We recall now the central concept of the D-homotopy theory (in-
troduced in [1],[3]) – that of D-orbit. A D-orbit is a D-space T : D → T op,
such that colimD T = {∗}. F d is a free D-orbit generated in d ∈ obj(D) if
T opD 3 F d = homD(d, ?), i.e. F d(d′) = homD(d, d′) and F d(d′ → d′′) is given
by the composition. Clearly F d is a D-orbit. A D-space X˜ is called free if for any
s ∈ colimCX˜ the full orbit Ts lying over s is free.

2.4. D-CW -complexes. A D-cell is a D-space of the form T × en, where T is a
D-orbit and en is the standard n-cell. An attaching map of this D-cell to some
D-space X˜ is a map φ : T × ∂en → X˜ .

A (relative) D-CW -complex (X˜ , X˜ −1) is a D-space X˜ together with a filtration
X˜ −1 ⊂ X˜ 0 ⊂ . . . ⊂ X˜ n ⊂ X˜ n+1 ⊂ . . . ⊂ X˜ = colimnX˜ n, such that X˜ n+1 is
obtained from X˜ n by attaching a set of n-dimensional D-cells. In other words one
has a push-out diagram of D-spaces:∐

i(Ti × ∂en)
φ−−−−→ X˜ n−1y y∐

i(Ti × en) Φ−−−−→ X˜ n
If X˜ −1 = ∅ we call the D-CW -complex absolute.
Let X˜ be a D-CW -complex. A D-subspace Y˜ ⊂ X˜ is called the cellular subspace

if Y˜ has a D-CW -structure such that each cell of Y˜ is also a cell of X˜ .

2.5. The category of orbits. To each small category D we associate its category
of orbits OD. This is the full topological sub-category of T opD generated by all
D-orbits.

Usually OD is not a small category. For example, if D = J = (•−→•), then
OJ ∼= T op.

If O is a small subcategory of OD, then a D-CW -complex X˜ is of type O if any
orbit T used in the construction of X˜ is also an element of obj(O).

In this paper we will be mostly interested in diagrams which are homotopy
equivalent to finite D-CW -complexes. It will always be assumed that any finite D-
CW -complex under consideration is of orbit type O for some fixed full topological
subcategory O of OD with finite amount of objects.

2.6. Orbit point (?)O and realization |?|D functors. Suppose O is a small
category of D-orbits. The orbit point functor (?)O : T opD → T opO

op
is the

generalization to the diagram case of Bredon’s fixed point functor. For any D-space
X˜ (usually of type O) (X˜ )O is an Oop diagram such that (X˜ )O(T ) = homD(T,X˜ )
for all T ∈ obj(O) and the arrows of the diagram are induced by composition with
the maps between orbits.

If f : X˜ → Y˜ is an equivariant map between two D-spaces, then there exist an
Oop-equivariant map fO : X˜ O → Y˜O, which is obtained from f by the composition:

X˜ O(T ) = homD(T,X˜ ) 3 g fO7−→ f ◦ g ∈ homD(T, Y˜ ) = Y˜O(T )
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The fundamental property of the (?)O functor is that for any D-space X˜ the
Oop-space (X˜ )O is Oop-free [1, 3.7].

Example 2.1. Let O be the full subcategory of OD generated by the set of free
orbits. Then O is isomorphic to Dop as a category and (X˜ )O ∼= X˜ for any diagram
X˜ (Yoneda’s lemma). However, only free D-spaces are of orbit type O.

Another easy case occurs when X˜ is a D-CW -space. We shall discuss it in the
next section.

If D = G is a group, then the orbit point functor coincides with the fixed points
sets functor, which relates a space with an action of G to the diagram of subspaces
fixed by subgroups of G.

There exists a left adjoint to (?)O. It is called realization functor |?|D, since
it takes an Oop-space and produces a D-space with the prescribed orbit point
data (up to local weak equivalence). Realization functors in the group case have
been constructed by A.D.Elmendorf [7] and have been generalized to the arbitrary
diagram case by W.Dwyer and D.Kan [6].

2.7. Equivariant Euler characteristic. Let X˜ be a finite D-CW -complex. If X˜is of type O for some category of orbits with a finite amount of objects, then hO
will denote the homotopy category of O, i.e. obj(hO) = obj(O) and morhO(T˜ 1, T˜ 2)
is the set of D-homotopy classes of maps.

Let U(D,O) = U(D) =
⊕

T∈Iso(obj(hO)) Z be the free abelian group generated
by the finite set of homotopy classes of orbits in O.

Let n(X˜ , T, i) be the number of i-dimensional cells of X˜ of type T and put

n(X˜ , T ) =
∑
i≥0

n(X˜ , T, i).
We define the equivariant Euler characteristic χD(X˜ ) ∈ U(D) by the formula

χD(X˜ ) =
∑

[T ]∈Iso(hO)

n(X˜ , T )[T ].

Equivalently, the equivariant Euler characteristic is the Universal Additive In-
variant [10, I.5] (U(D), χD) of the category of finite D-CW -complexes of type O,
where the cofibrations are relative D-CW -complexes.

3. Equivariant cellular homology

3.1. Oop-CW–structure on the orbit point diagram of a D-CW–complex.
The construction of the equivariant (co)homology functor [1, 4.16] depends on a
cellular decomposition of the orbit point diagram X˜ O. In this section we show that
if X˜ is a D-CW–complex, then X˜ O has a simple Oop-CW–structure.

For any orbit T the functor homD(T, ?) : T opD → T op commutes, obviously,
with coproducts. This functor is a right adjoint, hence, it commutes with inverse
limits, but it does not commute, in general, with pushouts. For example, if Tn
denotes a J-diagram with n points mapped into one point, then T1

∐
T0
T2 = T3.

Applying the functor homJ(T2, ?), we obtain

homJ(T2, T1)
∐

homJ (T2,T0)

homJ(T2, T2) = {5 points} 6=

homJ(T2, T3) = {9 points}.
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Despite the example above, the functor homJ(T2, ?) commutes with pushouts
that attach cells in D-CW -complexes.

Proposition 3.1. Let X˜ be a D-CW -complex of orbit type O, for some full, small
subcategory O of the category of orbits. Then X˜ O has an Oop-CW -structure induced
by the D-CW -structure of X˜ in the following sense: if X˜ 0 ⊆ X˜ 1 ⊆ · · · ⊆ X˜ n ⊆· · · ⊆ X˜ = colimnX˜ n is a D-CW filtration of X˜ , such that each X˜ n is the push-out

(3)

∐
i Ti × Sn−1 φ−−−−→ X˜ n−1y yin∐
i Ti ×Dn Φ−−−−→ X˜ n,

then there exists an Oop-CW -filtration X˜ O0 ⊆ X˜ O1 ⊆ · · · ⊆ X˜ On ⊆ · · · ⊆ X˜ O =
colimnX˜ On , where X˜ On = (X˜ n)O, and

(4)

∐
i F

Ti × Sn−1 φO−−−−→ X˜ On−1y yiOn∐
i F

Ti ×Dn ΦO−−−−→ X˜ On
is a push-out square.

Proof. We proceed by induction on the skeleton of X˜ . If X˜ 0 =
∐
Ti, then

X˜ O0 (T ) = (
∐

Ti)O(T ) = homD(T,
∐

Ti) =
∐

homD(T, Ti) =∐
homOop(FT , FTi) =

∐
FTi(T ).

Hence the base of the induction.
Let us assume the proposition for X˜ n−1. We need to prove it for X˜ n. Applying

the functor (?)O on the commutative square 3, we obtain the commutative square
4. To complete the proof we need to show that 4 is a push-out. Direct limits of
diagrams of functors are computed object by object, so it suffices to show that for
each orbit T ∈ O the commutative diagram

(5)

∐
i hom(T, Ti)× Sn−1 hom(T,φ)−−−−−−→ hom(T,X˜ n−1)y yhom(T,in)∐
i hom(T, Ti)×Dn hom(T,Φ)−−−−−−→ hom(T,X˜ n)

is a pushout of topological spaces.
First we show that the commutative square 5 is a pushout of sets and afterwards

we notice that this is also a pushout in the category of compactly generated spaces
T op.

Upon application of the forgetful functor U : T op → Sets (which we do not
write explicitly), each entry of the commutative square 5 equals the coproduct of
the corresponding entries of the following squares (recall that hom(T, ?) commutes
with coproducts).



EQUIVARIANT CELLULAR HOMOLOGY AND ITS APPLICATIONS 5

∐
i hom(T, Ti)× Sn−1 −−−−→ hom(T,X˜ n−1)y y∐
i hom(T, Ti)× Sn−1 −−−−→ hom(T,X˜ n \ (

∐
i Ti ×

◦
Dn))

∅ −−−−→ ∅y y
hom(T,

∐
i Ti ×

◦
Dn) −−−−→ hom(T,

∐
i Ti ×

◦
Dn)

Both squares are pushouts of sets (in the first square vertical arrows are bijections
and in the second horizontal arrows are bijections). The commutative square 5 is
a pushout of sets, since pushouts commute with coproducts.

We work in the category of compactly generated Hausdorff spaces and a pushout
in this category may be calculated as a pushout in the category of all Hausdorff
spaces. But if the same pushout, calculated in the category of all topological spaces,
appears to be a Hausdorff space, then it is a pushout in the subcategory of Hausdorff
spaces. (See, e.g., Mac Lane [11, VII.8.2, V.9.2 ].) It remains to show that the
square 5 is a push-out in the category of all topological spaces. We know that this is
a pushout of sets, and it is routine to check that the space hom(T,X˜ n) (topologized
as a subspace of ×d∈obj(D) hom(T (d), X˜ n(d))) has the topology of colimit in the
category of all topological spaces. �

3.2. D-CW -homology functor. Equivariant homological algebra was introduced
by Ch. Watts [13] and became a useful tool for treating various versions of equiva-
riant homology. We refer to T. tom Dieck [4] for a modern account of the theory.

To define the equivariant cellular chain complex, take Cq(X˜ ) to be the free ROop-
module, where to each q-dimensional cell of X˜ O of type FT corresponds the direct
summand R(FT ) = R homO(?, T ) = R homOop(T, ?) of Cq(X˜ ). (R(FT ) is a free
ROop-module in the sense of [4]).

Boundary maps are defined easily on the generators of free ROop-modules Cq(X˜ ).
These generators correspond bijectively to generators of freeR-modulesHq((colimDX˜ )q, (colimDX˜ )q−1, R)
which are isomorphic, by definition, to the CW -chain complexes of colimDX˜ ∼=colimDX˜ O [1, p. 111]. But for the ordinary CW -chains, boundary maps

Hq((colimX˜ )q, (colimX˜ )q−1, R)
∂q−→ Hq−1((colimX˜ )q−1, (colimX˜ )q−2, R)

are defined as connecting homomorphisms in the long exact sequence of the triple
((colimX˜ )q, (colimX˜ )q−1, (colimX˜ )q−2). Thus we can extend the definition uniquely
to boundary maps in the equivariant cellular chain complex.

For any homotopy (co)functor M : O → R-mod we define (co)chains with coef-
ficients in M by

CO∗ (X˜ ,M) = M ⊗Oop C∗(X˜ )(6)
C∗O(X˜ ,M) = homOop(C∗(X˜ ),M).(7)

The (co)homology HD
∗ (X˜ ;M) (H∗D(X˜ ;M)) of X˜ with coefficients in M is the

(co)homology of the (co)chain complex 6 (7).
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3.3. Isotropy ring I. S.J. Willson [14] has developed a universal coefficient system
for the G-equivariant homology (where G is a compact Lie group). Let us generalize
his approach to the coefficient systems for the classicalD-homology theory. Suppose
O is a small, full subcategory of the orbit category OD. If X˜ is a D-space of orbit
type O, then a coefficient system for the ordinary (co)homology is a homotopy
(co)functor M : O → (R−mod).

Definition 3.2. Let R be a commutative ring. An isotropy ring I = IR,O
D is gen-

erated by mor(hO) as a free R-module. Define the multiplication on the generators
by

fg =
{
f ◦ g, if codom(g) = dom(f)

0, otherwise

and extend the definition to the rest of the elements of I by linearity.

Proposition 3.3. The category M of the left I-modules which satisfy:

(8) ∀M ∈ obj(M), M =
⊕

T∈obj(hO)

1TM

(where {1TM}T∈obj(hO) are left R-modules) and the category of R(hO)-mod of
functors from hO to the category of left R-modules are equivalent.

Proof. Let us define a pair of functors which induce the required equivalence:

ζ :M� R(hO)-mod : ξ.

Let M ∈ obj(M), T ∈ obj(hO), then define

ζM(T ) = 1TM.

If mor(hO) 3 f : T1 → T2, then define

ζM(f)(1T1m) = f1T1m = (1T2f)1T1m ∈ 1T2M.

Obviously the morphisms of the left I modules correspond to the natural transfor-
mations of the functors.

Given a R(hO)-module N , then we have

ξN =
⊕

T∈obj(hO)

N(T ), as a left R-module.

Define the left I-module structure on ξN by f(. . . , n, . . . ) = (. . . , fn, . . . ), where

N(codom(f)) 3 fn =
{
f(n), if n ∈ N(dom(f))

0, otherwise

Now it is clear that the defined functors provide the equivalence of the categories.
�

Remark 3.4. The ring I, considered as a left I-module, is an object ofM, because
I ∼=

⊕
T∈obj(hO) 1TI (as left R-modules) by the construction. But it also carries

an obvious structure of the right I module, so does the ζI(T ).

Remark 3.5. If obj(hO) is finite then the ring I has a two-sided identity element
1 =

∑
T∈obj(hO) 1T , together with its decomposition into the sum of the orthogonal

idempotents and the condition (8) is redundant.
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Definition 3.6. The augmentation map ϕ : I →
⊕

T∈Iso(obj(hO))R is defined for
any

I 3 g =
∑

T∈obj(hO)

∑
f∈mor(T,T )

rff +
∑

h∈mor(T1,T2),T1 6=T2

shh

(only a finite number of rf , sh ∈ R are non equal to zero) to be

ϕ(g) = (. . . ,
∑

f∈mor(T,T )

rf , . . .) ∈
⊕

T∈Iso(obj(hO))

R

Example 3.7. If the category O is a topological group, then the isotropy ring is just
the group ring I = R[O]. The map ϕ in this case is the ordinary augmentation
map: ϕ(

∑
rifi) =

∑
ri ∈ R.

Remark 3.8. The idempotents in I which correspond to the D-homotopy equivalent
orbits are identified under ϕ. Clearly ϕ is an epimorphism of rings. Consider the
abelinization functor Ab : (Rings) → Ab that maps a ring to its additive group
divided by the commutator subgroup. Then Ab(ϕ) is a homomorphism of abelian
groups Ab(ϕ) : Ab(I)→

⊕
T∈Iso(obj(hO))R. The last map will be used to obtain a

generalization of the Euler-Poincaré formula.

4. Applications

Let X˜ be a finite D-CW -complex of type O for some orbit category O with
obj(O) a finite set.

4.1. Equivariant Euler-Poincaré formula. We recall that the equivariant Euler
characteristic lies in the abelian group U(D) ∼=

⊕
Iso(obj(hO)) Z, so in order to

apply the Hattori–Stallings machinery we need to choose a coefficient system for
the equivariant homology such that the resulting chain complex and homology
groups will be endowed with the module structure over some ring S which allows
an epimorphism ε : Ab(S) −→ U(D), to ensure that every possible value of the
equivariant Euler characteristic is covered.

Our choice of the coefficients will be the isotropy ring I = IZ,O
D taken over itself

as a left module. Then we take ε = Ab(ϕ) : Ab(I) →
⊕

Iso(obj(hO)) Z ∼= U(D),
which is an epimorphism by construction.

Lemma 4.1. Let X˜ be a finite D-CW -complex. Suppose X˜ has nq q-dimensional
cells and t1 +· · ·+ts = nq, where ti is the number of q-dimensional cells of the same
homotopy type Ti ∈ Iso(obj(hO)). Then Cq(X˜ )⊗O ζI ∼= ζI(T1)t1 ⊕ · · · ⊕ ζI(Tn)ts
as a left Z-module.

Proof. Let ti = ri1 + · · ·+rik, where rij is the number of q-dimensional cells of type
Tij ∈ obj(O) of homotopy type Ti. By the construction of the equivariant homology,
Cq(X˜ ) =

⊕s
i=1(⊕kj=1Z(homO(?, Tij)rij )). The dual Yoneda isomorphism [9, p.74]

implies that

Cq(X˜ )⊗O ζI ∼=
s⊕
i=1

(⊕kj=1ζI(Tij)rij ) ∼=
s⊕
i=1

⊕kj=1(1Tij
I)rij .

If Tij1 is isomorphic to Tij2 in hO then there is an obvious isomorphism of the left
Z-modules and right I-modules 1Tij1

I ∼= 1Tij2
I. Let us choose a representative Ti
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of each isomorphism class of objects in hO. Then

Cq(X˜ )⊗O ζI ∼=
s⊕
i=1

(1TiI)(
∑k

j=1 rij) ∼=
s⊕
i=1

(1TiI)ti ∼=
s⊕
i=1

(ζI(Ti))ti

�

Because of 3.4 the equivariant chain complex {Cq(X˜ ) ⊗O ζI}dimX˜q=0 is a complex
of projective right I-modules and the equivariant homology is endowed with the
right I-module structure.

Notation: The Euler characteristic of an I-differential complex with respect to
rkHS(?) is denoted by χHS(?).

Proposition 4.2. Let K∗ = C∗(X˜ ) ⊗O ζI be a right I-complex, then χD(X˜ ) =
Ab(ϕ)(χHS(K∗)), whenever the left side is defined.

Proof. It is easy to see that rkHS(1TI) = 1T ∈ Ab(I). Lemma 4.1 together with
3.8 completes the proof. �

Now we combine 4.2 with the additivity properties of the Hattori-Stallings rank
and obtain the following

Theorem 4.3. χD(X˜ ) = Ab(ϕ)(
∑∞
n=0(−1)nrkHSH

D
n (X˜ ; ζI)), whenever the left

side is defined.

Remark 4.4. One can denote r̃kHS(?) = Ab(ϕ)(rkHS(?)) to obtain from the last
theorem the main formula (1).

Example 4.5. Consider the following J-diagram:

Z˜ =

�
�
�

�
�

?

The diagram Z˜ has two 0-cells of type T2 =
[
··
↓
·

]
and one 1-cell of type T3 =

[
···
↓
·

]
,

hence,

χJ(Z˜ ) = 2
[
··
↓
·

]
−
[
···
↓
·

]
.

In this case a possible choice for the category O is the full subcategory of OD
generated by the two objects T2 and T3. The cellular chain complex tensored with
the coefficients I = IZ,O

J becomes:

· · · → 0→ 1T3I
∂1→ (1T2I)2

and ∂1 = 0 from orbit type considerations. U(J) = Z⊕ Z in our case; HJ
0 (Z˜ , I) =

(1T2I)2, HJ
1 (Z˜ , I) = 1T3I are right I - modules. Hence, χJ(Z˜ ) = (2, 0)− (0, 1) =

(2,−1), as expected.
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Let us calculate, for comparison, the J-equivariant homology of Z˜ with the
constant coefficients ZO(T ) = Z for any T in obj(O) and ZO(f) = idZ for any
f ∈ mor(O). HJ

i (Z˜ ,ZO) = Hi(colimJ Z˜ ,Z). Then colimJ Z˜ = I = [0, 1] and

HJ
i (Z˜ ,ZO) =

{
Z, if i = 0
0, otherwise

Thus, the constant diagram of coefficients ZO is inappropriate for the Euler-Poincaré for-
mula.

4.2. Equivariant Lefschetz theorem. Using the cellular equivariant homology
functor we can now prove a version of the equivariant Lefschetz theorem.

Some Lefschetz type results in the equivariant setting may be obtained already by
applying the ordinary Lefschetz theorem: consider an equivariant map f : X˜ → X˜ ,
where X˜ is a diagram over the small category D, then if the Lefschetz number
Λ(colimDX˜ ) 6= 0, there are f -invariant D-orbits in X˜ . However, the advantage of
using the equivariant homology and equivariant Lefschetz number ΛD(X˜ ) ∈ U(D)
is that we obtain specific information about the orbit type of the invariant orbit.

First, we give a technical

Definition 4.6. AD-CW -complex X˜ is called a triangulated D-space if the natural
CW -structure of colimX˜ also triangulates colimX˜ .

The following lemma will be used in the proof of the equivariant Lefschetz the-
orem.

Lemma 4.7. Let X˜ be a triangulated diagram, then for any refinement Y of the
triangulation of colimX˜ , there exists a D-CW -complex X˜ ′, such that X˜ ′ is D-
homeomorphic to X˜ and colimX˜ ′ = Y (as triangulated spaces). X˜ ′ will be called
the refinement of X˜ .

Proof. We proceed by induction on the dimension n of the simplices of Y . The base
of the induction is clear. Suppose that we have managed to provide the refinement
of X˜ for any simplex of Y up to dimension n − 1. Consider a new simplex ∆
of dimension n in the triangulation of Y . It lies in some old simplex of colimX˜ :
∆ ∈ ∆′. Then consider the pull-back:

lim

 X
↓̃

◦
∆ ↪→ colimDX˜

 = T ×
◦
∆,

where T is the orbit that lies over the baricenter of ∆′.
Take T × ∆ to be an n-cell of the new D-CW−complex X˜ ′. The attachment

map φ : T ×∂∆→ X˜ ′n−1 ⊂ X˜ is just the inclusion on the orbits that lie over points
of the boundary which are internal with respect to ∆′; for the orbits over boundary
points of ∆′, take φ to be the restriction of the attachment map of the simplex
T ×∆′ in the triangulated D-CW -complex X˜ ′. Continuing in the same way for the
rest of the n-simplices of Y completes the induction step.

By the construction, our D-CW -complex X˜ ′ has the same underlying topological
diagram as X˜ , therefore they are D-homeomorphic. �

Definition 4.8. Let f : X˜ → X˜ be a map of a finite triangulated D-space X˜ of
orbit type O, where O is an orbit category containing a finite number n of objects.
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If I = IZ,O
D , then the equivariant Lefschetz number of f is

U(D) 3 (λ1, . . . , λn) = ΛD(f) = Ab(ϕ)(
∞∑
k=0

(−1)ktrHS(HD
k (f ; I))).

Remark 4.9. If we denote t̃rHS(?) = Ab(ϕ)(rkHS(?)), then the definition above
coincides with Formula (2) for the Lefschetz number.

Theorem 4.10. If X˜ is a finite triangulated diagram over D with a D-map f :
X˜ → X˜ and ΛD(f) = (λ1, . . . , λn) ∈ U(D) is the Lefschetz number of f , then for
each m, if λm 6= 0, there exists an f -invariant orbit of type Tm in X˜ .

Proof. A simplex in colimX˜ will be called of type T if the overlaying orbit is of type
T in X˜ . Suppose that there are no invariant orbits of type Tm. This is equivalent to
the condition that the map induced on colimX˜ has no fixed points in the simplices
of type Tm.

Since X˜ is a finite triangulated diagram, colimX˜ is a finite triangulated space,
hence it is a compact metric space. If there are no fixed points of type Tm, then
there exists a refinement Y of the triangulation such that if ∆ is a simplex of type
Tm in Y , ∆ ∩ (colim f)(∆) = ∅.

Consider the refinement X˜ ′ of X˜ , which exists by Lemma 4.7. Since X˜ ′ ∼= X˜ ,
HD
∗ (X˜ ′; I) = HD

∗ (X˜ ; I), Λ(f ′) = Λ(f), where f ′ : X˜ ′ → X˜ ′ is equal to f , λ′m = λm.
We will show now that λ′m = 0.

ΛD(f ′) = Ab(ϕ)(
∞∑
k=0

(−1)ktrHS(HD
k (f ′; I)))

= Ab(ϕ)(
∞∑
k=0

(−1)ktrHS(COk (f ′; I))),

where COk (f ′; I) is the map induced by f on the chains COk (X˜ ; I) = Ck(X˜ ) ⊗O
I = (1T1I)t1 ⊕ . . . ⊕ (1Tn

I)tn as an I-module. Because of the property: ∆ ∩
(colim f)(∆) = ∅ for any simplex ∆ of type Tm, the induced map on COk (X˜ ; I)
will take the generator 1Tm

corresponding to ∆ outside the submodule 1Tm
I, that

it generates. Then the m-th entry of Ab(ϕ)(
∑∞
k=0(−1)ktrHS(COk (f ′; I))) will be

zero. This is true for all k, hence λm = 0, in contadiction to the initial assumption.
Therefore there must exist invariant orbits of type Tm �
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